Highly branched cobalt phosphide nanostructures for hydrogen-evolution electrocatalysis

نویسندگان

  • Eric J. Popczun
  • Christopher W. Roske
  • Carlos G. Read
  • J. Chance Crompton
  • Joshua M. McEnaney
  • Juan F. Callejas
  • Nathan S. Lewis
  • Raymond E. Schaak
چکیده

CoP nanostructures that exposed predominantly (111) crystal facets were synthesized and evaluated for performance as electrocatalysts for the hydrogen-evolution reaction (HER). The branched CoP nanostructures were synthesized by reacting cobalt(II) acetylacetonate with trioctylphosphine in the presence of trioctylphosphine oxide. Electrodes comprised of the branched CoP nanostructures deposited at a loading density of 1 mg cm 2 on Ti electrodes required an overpotential of 117 mV to produce a current density of 20 mA cm 2 in 0.50 M H2SO4. Hence the branched CoP nanostructures belong to the growing family of highly active non-noble-metal HER electrocatalysts. Comparisons with related CoP systems have provided insights into the impact that shape-controlled nanoparticles and nanoparticle–electrode interactions have on the activity and stability of nanostructured HER electrocatalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution.

We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction.

متن کامل

Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide

Production of hydrogen from water electrolysis has stimulated the search of sustainable electrocatalysts as possible alternatives. Recently, cobalt phosphide (CoP) and molybdenum phosphide (MoP) received great attention owing to their superior catalytic activity and stability towards the hydrogen evolution reaction (HER) which rivals platinum catalysts. In this study, we synthesize and study a ...

متن کامل

MOF-Derived Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts

The development of a highly efficient and stable bifunctional electrocatalyst for water splitting is still a challenging issue in obtaining clean and sustainable chemical fuels. Herein, a novel bifunctional catalyst consisting of 2D transition-metal phosphide nanosheets with abundant reactive sites templated by Co-centered metal-organic framework nanosheets, denoted as CoP-NS/C, has been develo...

متن کامل

Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting

Highly active and robust eletcrocatalysts based on earth-abundant elements are desirable to generate hydrogen and oxygen as fuels from water sustainably to replace noble metal materials. Here we report an approach to synthesize porous hybrid nanostructures combining amorphous nickel-cobalt complexes with 1T phase molybdenum disulfide (MoS2) via hydrazine-induced phase transformation for water s...

متن کامل

Assessment of the Stability and Operability of Cobalt Phosphide Electrocatalyst for Hydrogen Evolution.

Transition metal phosphides have been investigated heavily as hydrogen evolution reaction (HER) catalysts. One of the most active transition metal phosphides, CoP, has been tested for its stability and operability under mild conditions that it may be exposed to in its applications (photoelectrochemistry and artificial photosynthesis). Surface-interrogation scanning electrochemical microscopy (S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015